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1. INSERTION OF A SPLINE BETWEEN MODELS

Let M and M′ be two models that differ by one knot; model M′ has one ex-
tra knot that is a child of a node also in M. If the knot set for model M is 15

{0·0000, 0·0625, 0·1250, 0·2500, 0·5000, 0·7500, 1·0000} and the knot set for model M′ is
{0·0000, 0·0625, 0·1250, 0·2500, 0·5000, 0·6250, 0·7500, 1·0000}, then these two models differ
only by the knot 0·6250. If j = 1 and M and M′ are defined as above, there are 8 local ex-
tremum splines in modelM′. Of the 8 local extremum splines, 5 of these are shared withM.
This relationship is shown pictorially in Fig. 1. Model M′ is plotted in red and model M is 20

plotted in black, and there are only three basis functions inM′ that do not have an identical basis
functions inM.

The sharing of basis functions between nested models allows for the development of the
reversible jump algorithm outlined in the manuscript. The number of functions shared de-
pends upon the order of the B-spline used in the construction. For example, when j = 1, 25

p(M | Y, β−M) is a mixture distribution with 4 components and p(M′ | Y, β−M′) is a mix-
ture distribution with 8 components. If j = 2, there are 8 and 16 components in the mixture
distribution. Computation time significantly increases with j, because the mixture distribution
has 2j components for modelM′ and 2j−1 components for modelM.

2. DEGREE OF THE B-SPLINE USED 30

The construction of the local extremum spline is dependent upon the degree j of the B-spline.
In other applications of B-splines, j = 3 is a standard choice, leading to cubic B-splines. For
local extremum splines, we find it is sufficient practically to set j = 1; this may produce slightly
less smooth function estimates than j = 2 or j = 3, but we find differences are very minor. Table
1 compares integrated mean square error in estimating functions f1, f2, f3, f4, f5, f6, and f7 35

in the manuscript, when n = 200. There are noticible differences only for function f5, and these
minor differences, illustrated in Fig. 2, are due to j = 1 producing a slightly less smooth estimate.
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Fig. 1. Plot of two B-spline bases, red and black, that differ
by only one knot.
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Fig. 2. The fit of the local extremum spline with j = 2,
black line, compared to a local extrema spline with j = 1,

red line.
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Table 1. Integrated mean squared error comparing the local extremum spline constructions
when j = 1 and j = 2. For each function, the top row represents the simulation condition σ2 = 4
and the bottom row represents the simulation condition σ2 = 1.

Spline Construction Spline Construction
True Function j = 1 j = 2

f1
0·096 0·091
0·022 0·024

f2
0·104 0·148
0·040 0·044

f3
0·081 0·088
0·024 0·024

f4
0·088 0·091
0·026 0·025

f5
0·200 0·116
0·055 0·032

f6
0·115 0·123
0·032 0·034

f7
0·120 0·123
0·030 0·032

Computational concerns are important in choosing j. As j increases, it is more computa-
tionally demanding to compute p(M | Y, β−M) and p(M′ | Y, β−M). When j = 1 the Markov
chain Monte Carlo algorithm takes between 20 and 50 seconds per 50, 000 iterations, and when 40

j = 2 the algorithm takes between 50 and 90 seconds per 50, 000 iterations.

3. IMPROVING SAMPLING THROUGH PARALLEL TEMPERING

The posterior distribution is often multimodal, and the sampler proposed in the manuscript of-
ten gets stuck in local modes. This occurs when widely different parameter values have relatively
large support by the data, and there is low posterior density between these isolated modes. To 45

increase the probability of jumps between modes, a parallel tempering algorithm (Geyer, 1991,
2011) is implemented. Define m parallel chains over hi(y, θi) = exp{κi`(y | θi) + log p(θi)},
where θi = {Mi, βi, αi, πi, λi, σi}, `(y | θi) is the log-likelihood of the data given θi, p(θi) is
the prior over the parameters, and 0 < κ1 < . . . < κm = 1.

The sampling algorithm proceeds by first running chains for each hi independently. Then, 50

for two adjacent chains i and j chosen with equal probability, where chains are defined adja-
cent when j = i+ 1, the parameters θi and θj are swapped in a Metropolis-Hasting step. The
acceptance probability is min{1, r(i, j)} with

r(i, j) =
hj(y, θi)hi(y, θj)

hi(y, θi)hj(y, θj)
.

With a good choice for κ1 < . . . < κm = 1, mixing of the target distribution hm(y, θm) is im- 55

proved, and accurate posterior estimates of the function, as well as the number of change points
in the model, can be obtained with relatively few iterations.
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Table 2. Effective sample sizes per 50, 000 samples for seven functions given in Section 4.2 of
the manuscript.

True Effective Sample Size
function g(0) g(0·2) g(0·4) g(0·6) g(0·8) g(1) α1 α2

g1(x) 457 1013 988 542 1749 1425 460 411
g2(x) 376 1456 721 794 1301 1860 501 569
g3(x) 678 1229 1209 1543 1736 1254 540 567
g4(x) 490 1700 1794 1743 2006 1987 580 596
g5(x) 742 1256 1225 1123 1934 1663 702 696
g6(x) 699 1169 1629 1561 1885 1939 707 593
g7(x) 769 873 1881 1940 1661 1423 709 685

4. CONVERGENCE OF THE MARKOV CHAIN MONTE CARLO ALGORITHM

To determine the number of samples needed in the simulation studies, simulated data sets
were fit and convergence was monitored. In all examples, the local extremum spline is defined60

as in the manuscript with H = 2 and j = 2. Table 2 shows the effective sample size per 50, 000
Markov chain Carlo samples for the simulated functions in section 4.2 of the manuscript for
the function at {0, 0·2, 0·4, 0·6, 0·8, 1·0} and the change point parameters α1 and α2, which are
computed using CODA (Plummer et al., 2006). This table shows that the effective sample size
for each parameter is typically over 1, 000 per 50, 000 samples when estimating the function; the65

effective sample size for the change point parameters is over 1, 000 per 150, 000 samples.
We also monitored the mixing of the algorithm. Figures 3 and 4 show the observed trace plots

for the change point parameters. Figure 3 shows how the change point parameters, which are not
individually identifiable, move between extremum. In this example, the function 4·5 sin{2π(x−
0·5)} is sampled evenly across the interval [−0·5, 0·5]. A total of n = 200 points are taken and70

the error distribution is N(0, 1). This function has well defined change points at −0·25 and
0·25. The posterior distribution reflects this by placing a high probability on two change points
concentrated at these locations.

Fig. 4 shows a trace plot for 40, 000 samples from a posterior distribution with less dis-
tinct change points. Here, 200 points are sampled from the function −20(x− 0·25)2 with75

εi ∼ N(0, 4). To model an umbrella shaped pattern, one change point must be interior to
[−0·5, 0·5] and the other change point must be less than or equal to−0·5. The extrema is not well
identified and the change points alternate between an umbrella shape and a monotone increas-
ing pattern. The plot shows the parameters moving between these shapes. This curve estimates
are shown in Fig. 5. The local extremum approach, black line, is compared against a frequentist80

smoothing approach estimated using the R (R Core Team, 2015) function smooth.spline(), red
line. Both compared to the true curve, green line. This plot shows the difficulty both methods
have in determining the single maximum given the data. The local extremum spline forms a flat
line from the maximum to the right hand side of the interval, while the smoothing spline produces
artifactual bumps in this region.85

5. PROTECTING THE TYPE I ERROR RATE.
We investigate the type I error rate using specified cut points for hypothesis tests defined in

proposition 2 for the simulations in the manuscript. For this comparison, we use the cut point
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Fig. 3. The trace plot of 40,000 sampled change point pa-
rameters when H = 2 in the LX-spline. Black dots repre-
sent one change point and red dots represent the other. The

sampled function has two change points.
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Fig. 4. The trace plot of 40,000 sampled change point pa-
rameters when H = 2 in the LX-spline. Black dots repre-
sent one change point and red dots represent the other. The

sampled function has two change points.
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Fig. 5. The fit of the local extremum spline, black line,
compared to frequentist smoothing splines, red line, when

estimating the true curve, green line.

101/2 suggested by Jeffreys (1998, page 432) and a cut point that is based upon the distribution
of the Bayes factor, under the null hypothesis, in a worst case scenario (Baraud et al., 2005).90

To define the worst case scenario, 100 evenly spaced points were chosen in the interval [0, 1]
with the response at each point simulated from aN(0, 1). This is a flat curve that is the boundary
for any test defined in proposition 2. For each simulated data set, a local extremum spline with
H = 2 is fit and the Bayes factor is computed. This is done 1, 000 times for each hypothesis, and
the distribution of the Bayes factor under the null is estimated. For this simulation, the cut point95

is chosen such that α = 0·05. All hypothesis testing simulations described in the manuscript are
used when the true curve is: monotone increasing, denoted as hypothesis H01, and any shape
having 0 or 1 extremum in the interval, denoted as hypothesis H02. Simulation function f5 was
also considered using the same conditions in the hypothesis testing section of the manuscript.

Table 3 gives the observed percentage of times the null was correctly chosen over the alter-100

native. This table shows that using the cut points of 3·16, Jeffreys, or 3·47 and 3·75, Baraud
et al. (2005) for H01 and H02 respectively, the null is correctly chosen at a rate greater than the
specified 95% rate for all but one case, and all cases are within the margin of error 0·085. This
suggests that the type I error is protected at α = 0·05 using standard cut points for Bayes factors.

6. SAMPLING ALGORITHM OF PARAMETERS GIVENM105

In outlining the algorithm, we drop the dependence onM from the design matrix and decom-
pose the design matrix B∗(α) as

B∗(α) = zr(α)B
∗r + . . . z0(α)B

∗0.
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Table 3. The observed 100(1− α)% of times where the listed hypothesis was correctly chosen.
Function H01 H02

Jeffreys Baraud et al. (2005) Jeffreys Baraud et al. (2005)

g1 100 100 99·6 99·6
g3 100 100 100 100
g4 N/A 100 100 100
g2 100 N/A 92·4 99·6
f5 N/A N/A 100 100

Here Br, 0 ≤ r ≤ H, is a n× k matrix where each element B∗r(i,k) from row i and column k of
the matrix B∗r is computed as 110

B∗r(i,k) =

∫ xi

τk

ξrB(j,k)(ξ) dξ.

Define zr(α) as a function of α corresponding to the coefficient of xr in the polynomial∏H
i=1(x− αh). For example, when H = 2 one has z0(α) = α2α1, z1(α) = −(α1 + α2) and

z2(α) = 1. The matrix B∗(α) is used when sampling β and {B∗r}Hr=0 is used when sampling α.
Sampling Algorithm 115

1. For 1 ≤ k ≤ K + j − 1, when sampling βk, let Y ∗ = Y −B∗(α)−kβ−k. Where β−k is β
without entry k, and B(α)−k is the design matrix without column k. Letting w = B∗(α)k, a
n× 1 column vector representing column k in X(α), sample βk from

p(βk|M) ∝1(βk=0)
φ(0, Ê, V̂ )

λ
+ 1(βk>0)φ(βk, Ê, V̂ ),

where V̂ = {τ(w′w)}−1 , Ê = V̂ (τw′Y ∗ − λ)−1 . 120

2. Let Y ∗ = Y −B∗(α)−0β−0 and sample β0 ∼ N(E, V ) where V = (τn+ c−1)−1 and E =
V (τY ∗).

3. For each αh in α, define Y ∗ = Y − [
∑H

r=0{z−r (α, αh)B∗r}]β, where z−r (α, αh) is a func-
tion representing the terms in zr(α) that do not have αh as a coefficient. For exam-
ple, when H = 2 then

∏H
i=1(x− αh) = x2 − (α1 + α2)x+ α1α2; in this case, z2(α) = 1, 125

z−2 (α, α1) = 1, z1(α) = −(α1 + α2), z−1 (α, α1) = −α2, and z−0 (α, α1) = 0. Similarly, let
w = [

∑H
r=0{z∗r (α, αh)B∗r}]β, where z∗r (α, αh) is a function that contains only the terms in

zr(α) with αh factored out. Again, when H = 2 for α1, z
∗
0(α, α1) = α2, z∗1(α, α1) = −1,

and z∗2(α, α1) = 0 as no term in z∗2(α) contains α1. Given these quantities sample

αh ∝ N(E, V )1a≤αh≤b 130

where V = {τ(w′w) +D−1h }
−1, E = V (τw′Y ∗ +D−1h Ch), and Ch = (b− a)/2, Dh = 1.

4. Sample λ ∝ Ga
{∑K+j−1

k=1 1(βk=0) + δ, κ+
∑K+j−1

k=1 βk1(βk>0)

}
1(λ > 1e− 5), a trun-

cated gamma distribution.

5. Sample π ∼ Beta
{
ν +

∑K+j−1
k=1 1(βk=0), ω +K + j − 1−

∑K+j−1
k=1 1(βk=0)

}
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Fig. 6. Fit of the local extremum spline, black line, to ob-
served muscle force data, solid triangles.

7. APPLICATIONS: ESTIMATING MUSCLE FORCE135

When studying the ability of a muscle to adapt to exercise protocols, muscle force tracings
are often used. One approach involves first activating the muscle and then after a short period
of time moving the joint through the range of motion (Baker et al., 2008). It is expected that
the muscle force quickly obtains a maximum force with the observed force decreasing until
joint movement; however, the observed force may plateau and not decrease before movement.140

When the joint is moved, there is an expected increase in the force output until the joint reaches
a specific angle, after which, the observed force decreases until the joint reaches its original
position. When the joint returns to its original position, the muscle remains activated and the
force output is non-increasing until deactivation. Estimation of this muscle force curve may
allow better understanding of adaptation or maladaptation following exercise, but it is important145

to include known biophysical constraints in curve estimation.
We model two force tracings, with n = 96 per tracing, using a local extremum spline having at

most H = 3 local extrema. Consistent with prior knowledge of a very high signal to noise ratio,
we place a Ga(2000, 1)prior on σ−2. We also applied frequentist smoothing splines, Gaussian
processes, and Bayesian P-splines. Competing methods are close to interpolating the data points,150

leaving unwanted artifactual bumps in the function estimate. However, as seen in Fig. 6, the
local extremum spline obtains an estimate restricted to the known shape and robust to minor
local fluctuations. Further, when the force tracing exhibits a single maxima, as in the left plot,
the local extremum spline can readily distinguish between this shape, and a shape which has two
maximum, as in the right plot, with no change in the model.155
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